GEOPHYSICAL INVESTIGATION OF AQUIFER POTENTIALS IN MASHI TOWN, KATSINA STATE, NIGERIA: A VERTICAL ELECTRICAL RESISTIVITY APPROACH
DOI:
https://doi.org/10.33003/jees.2025.0202/015Keywords:
Aquifers, Basement complex, Groundwater, Hydraulic conductivityAbstract
Groundwater is a vital natural resource concealed beneath the Earth's surface; it is the most undervalued component of global resources. It is a critical resource accounting for nearly one-third of the world's freshwater supplies, particularly in areas where surface water is limited or unpredictable. A geophysical survey using vertical electrical sounding (VES) was conducted to explore groundwater prospecting areas in Mashi town, Katsina state. A total of eighteen (18) VES survey points using Schlumberger array configuration were acquired, processed and interpreted. The results revealed aquifer resistivity ranges from 87.6 to 198 Ώm. In contrast, aquifer thickness ranges between 3.86 and 33.4 m, aquifer depth varies from 9.1 to 40.3 m, transverse resistance ranges between 206.124 and 4255 Ώm2, and the range of hydraulic conductivity is 2.734 to 5.955 m/day. The estimated transmissivity range is 13.634 to 126.047 m2/day. The results indicate that the southeastern part of the study area has the potential for groundwater development. Therefore, areas around VES 1 to 10 are suitable for borehole drilling, which could yield high-quality water, and a depth of 20-40 m should be targeted for groundwater development.
References
Abdulkadir, M., Garba, N. N., Nasiru, R., Saleh, M. A., Bello, S., & Khandaker, M. U. (2023). Statistical analysis of terrestrial gamma radiation dose rates in relation to different geological formations and soil types of Katsina State, Nigeria. International Journal of Environmental Analytical Chemistry, 103(14), 3251-3263 https://doi.org/10.1080/03067319.2021.1905806.
Akidi, S. O., Ubechu, B. O., Obioha, Y. E., Ikechukwu, C. C., & Amadi, C. C. (2024). Geoelectrical resistivity mapping for sustainable groundwater management in Umuahia South: Insights from vertical electrical sounding. International Journal of Science and Research Archive, 13(01), 2296–2319. https://doi.org/10.30574/ijsra.2024.13.1.1922.
Ali, K., Ebrahem, O. & Zayed, M. (2024). Assessment of groundwater resource to support
urban extension in West Nile Delta, Egypt. Arabian Journal of Geosciences, 17:315, https://doi.org/10.1007/s12517-024-12121-0.
Chandra, P. C. (2021). Geophysics in groundwater exploration and aquifer mapping in India. Jour. Geol. Soc. India, 97 (9): 1106–1109. https://doi.org/10.1007/s12594-021- 1827-7.
Ejepu, J. S., Jimoh, M. O., Abdullahi, S., Abdulfatai, I. A., Musa, S. T., & George, N. J. (2024). Geoelectric analysis for groundwater potential assessment and aquifer
Protection in a part of Shango, North-Central Nigeria. Discover Water, 4(1), 33 https://doi.org/10.1007/s43832-024-00091-z.
George, N. J. (2020). Appraisal of hydraulic flow units and factors of the dynamics and contamination of hydrogeological units in the littoral zones: a case study of Akwa Ibom State University and its Environs, Mkpat Enin LGA, Nigeria. Natural Resources Research, 29(6), 3771–3788. https://doi.org/10.1007/s11053-020-09673-9.
Gheorghe, A. (1978). Processing and synthesis of hydrogeological data. Abacus press, Tunbridge wells, Kent. 265.
Hassan, M., & Maiwada, A. S. (2021). Assessment of human perception of the impact of
The effects of climate change and population growth on water scarcity in the Katsina urban area, Katsina State, Nigeria. Dutse Journal of Pure and Applied Sciences, 7, 77–83.
Heigold, P.C., Gilkeson, R.H., Cartwright, K., Reed, P.C. (1979). Aquifer transmissivity
From surficial electrical methods. Groundwater, 17 (4), 338–345. https://doi.org/10.1111/j.1745-6584.1979.tb03326.x.
Ibrahim, D., Nemoto, Y., & Raghavan, V. (2025). Hydrogeophysical Analysis of Vertical Electrical Soundings for Groundwater Potential and Aquifer Vulnerability Evaluation
in the Federal Capital Territory, Abuja, Nigeria. International Journal of Geoinformatics, 21(1), 97–110. https://doi.org/10.10.52939/ijg.v21i1.3797.
Ige, O.O., Adunbarin, O.O. & Olaleye, I.M. (2022). Groundwater potential and aquifer
characterisation within Unilorin Campus, Ilorin, southwestern Nigeria, using integrated electrical parameters. Int. J. Energ. Water Res. 6, 353-370 https://doi.org/10.1007/s42108-021-00160-2
Niwas, S., & Singhal, D.C. (1981). Estimation of aquifer transmissivity from Dar Zarrouk
parameters in porous media. Hydrology 50:393–399.
Odochi, U. B., Iheanyichukwu, O. A., Okechukwu, O. S., Chukwuemeka, I. C., Juliana, O. I., Ifeanyi, O. S., Nkiru, N. C., Osita, I. P., & Emmanuel, A. E. (2024). Hydrogeological
assessment and contaminant transport modelling of Enyimba landfill site in Aba, Nigeria. Water Practice & Technology, 19(5), 2108–2124. https://doi.org/10.2166/wpt.2024.122.
Ogundana, A.K., & Falae, P.O. (2024). Groundwater potential modelling and aquifer zonation of a typical basement complex terrain: a case study. Environ Dev Sustain. 1–
23. https://doi.org/10.1007/s10668-024-04940-8.
Ohenhen, L. O., Mayle, M., Kolawole, F., Ismail, A., & Atekwana, E. A. (2023). Exploring
for groundwater in sub-Saharan Africa: Insights from integrated geophysical characterisation of a weathered basement aquifer system, central Malawi. Journal of Hydrology: Regional Studies, 47, 101433. https://doi.org/10.1016/j.ejrh.2023.101433.
Ojoawo, A. I., & Adagunodo, T. A. (2023). Groundwater occurrence and flow in varying
geological formations. In IOP Conference Series: Earth and Environmental Science (Vol. 1197, No. 1, p. 012009). IOP Publishing. doi.org/10.1088/1755/1315/1197/1/012009.
Ostad-Ali-Askari, K., & Shayannejad, M. (2021). Quantity and quality modelling of
groundwater to manage water resources in the Isfahan Borkhar Aquifer. Environ Dev Sustain 23, 15943–15959 https://doi.org/10.1007/s10668-021-01323-1.
Oyeyemi, K.D., Aizebeokhai, A.P., Metwaly, M., Omobulejo, O., Sanuade, O.A., Okon, E.E. (2022). Assessing the suitable electrical resistivity arrays for the characterisation
of basement aquifers using numerical modelling. Heliyon 8 (5). . https://doi.org/10.1016/j.heliyon.2022.e09427.
Salami, A. S., Babafemi, E. M., & Akperi, O. G. (2024). Basement groundwater potential
evaluation using the resistivity method: Ogugu and Environs, Akoko-Edo, Southwestern Nigeria, as a case study. International Journal of Earth Sciences Knowledge and Applications, 6(1), 29–36. http://www.ijeska.com/index.php/ijeska
Udeh, H. M., Opara, A. I., Akakuru, O. C., Chukwumerije, C. K., Oli, I. C., Osi-Okeke, I. E., & Eze, C. I. (2024). Aquifer geo-hydraulic characteristics of Enugu and environs, southeastern Nigeria, using pumping test and geo-sounding data. International Journal of Energy and Water Resources, 1-24. https://doi.org/10.1007/s42108-024-00304-0.
Wright, E.P. (1992). The hydrogeology of crystalline basement aquifers in Africa. Geological Soc. Spec. Publ. 66, 1–27.
Wu, W., Lo, M., Wada, Y., Famiglietti, J.S., Reager, J.T., Yeh, P.J., Ducharne, A., Yang, Z. (2020). Divergent effects of climate change on future groundwater availability in key
mid-latitude aquifers. Nat. Commun. 11, 3710. https://doi.org/10.1038/s41467-020- 17581-y.